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Overview

@ Try to sense as low in the atmosphere as possible.
Complements Chahine’s 250 mbar retrievals.

AIRS 791.7 wn Jacobian (dBT/dCO,)

Basics
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@ Must handle surface carefully.

@ Clear only. May try cloud-cleared radiances in the future.

@ Ocean zonal CO; derived using this algorithm extensively
validated in our 2007 JGR paper.

@ This work: Validate land CO, measurements. Nominal reporting

grid is 1-2 months, 5 degree grid boxes.
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@ FOV Selection
@ Used AIRS ACDS clear FOVs
Basics o Removed about 7% of FOVS due to cirrus
o ECMWF (with adjustments) used for atmospheric state.
@ Atmospheric State

e Atmospheric state from ECMWF adjusted for Tz and total
column water. Some FOVs removed due to poor water
vapor.

o Sea surface emissivity - Masuda. Land surface emissivity:
UW MODIS-based model.

o Further adjustments to the €T, product done
simultaneously with CO, retrieval.
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How Good is ECMWEF?

@ ECMWF strongly ties temperature to sondes, dynamic bias
adjustment procedure applied to satellite data

Basics @ Difference of Std of bias between AIRS and ECMWF and

AIRS NEDT is ~0.03 to 0.05K, equivalent to ~ 1-2 ppm of
CO».
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CO> Retrieval

@ 790cm! (surface channel, no CO; sensitivity)
@ 791cm™! (temperature insensitive CO, channel)

Basics
790 790 _ 790
Bobs - Bcalc - -/TS 6TS
791 791 _ 791 791
Bops — Beaie = JT, 6Ts+ Jco,6CO2

@ Assume emissivity constant between 790 and 791 cm™'.

@ Jacobians J computed for each FOV
@ CO; also retrieved similarly using SW channels (2395 cm™!
region). These are much more temperature sensitive and

provide a diagnostic on errors in ECMWF T(z).
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Bias Adjustment Needed for LW and SW CO;

Retrieval

@ Spectroscopy plus radiometric errors could easily reach
5-10 ppm
Calibration @ Used NOAA'’s GlobalView data set

GLOBALVIEW-CO2, 2008
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@ 400-500 mbar sensitivity limited validation to 11 aircraft
sites (all US). Hope to find more validation data sets in
Russia, Amazonia.
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NOAA’s GlobalView Aircraft Sites

@ Limited CO; profile information even with aircraft sites.

@ Simple approach; use the highest altitude flight only
Calibration (USUa”y 5-8 km)
@ GlobalView smooths the raw data. Form time series — and

linearly interpolate to AIRS measurement times.
Coincidence criteria: 4 degrees lat/lon and 4 days.

Beaver Crossing, Nebraska, United States (BNE) (40.80N,97.18W) USHA sites - Highest altitude airplanes
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Sample Histograms of Obs-Calc CO,, Day

Std due to AIRS Noise should be 7-9 ppm CO;
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Sample Histograms of Obs-Calc CO;, Night

HAA - Night - Mean ofse

BNE - Night - Mean ofse

Deviation 7.72 ppm

8.19 ppm - Standard Devation 6.86 ppm
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Bias Calibration

USA - Day - Mean offset = 7.70 ppm - Standard deviation = 7.62 ppm USA - Night — Mean offset = 6.28 ppm — Standard deviation = 7.76 ppm
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@ Errors appear to be relatively gaussian

@ Mean bias derived from ~200-500 AIRS FOVs per site
@ Daytime (Nighttime) Bias: 7.70 (6.28) ppm

@ Individual site Std: ~6 ppm.

°

Uncertainty = (mean over 11 sites)/+/11 = 0.4ppm. Roughly the
same as single site statistical uncertainty. Too low; US only sites
too homogeneous.
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Time series

@ Hard to examine AIRS versus aircraft CO, time series since
single FOV noise high.

Calibration @ So, fit AIRS data with the a simle function:
f(t) = A+ Rt+ G sin(wyt+ P1) + G sinRQwyt + ¢P2),

@ Two examples: HAA (7500 m) and BNE (7000 m)

longwave - daytime - HAA
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Southern Hemisphere Independent Data Set
Rarotonga, Cook Islands (RTA) - Cape Grim, Tasmania, Australia (AlA)

Deviation 7.12 ppm.
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RTA: 4500 m, ocean, good agreement AlA: 6500 m, daytime
bias implies we are a few ppm low
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AIRS Trends

Northern Hemisphere (30-50 deg) zonal avg

Results
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Jacobians - Day and Night differences

Mean Weighed Pressure 200404 - Daytime

Mean Weighed Pressre 200404 - Nighttime

Results

350 400 450 500 350

@ Weighed mean of the pressure field - using the calculated
Jacobians as the weighing function.

@ Overall, Daytime sees lower over continental areas.
@ Fill in blancks with surrounding averaged data (Sahara/Poles).

@ For now we use night only climatological Jacobians for CT
comparisons
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Yearly mean (Fall to Fall) - 2002 to 2006

CO2 mean over all 5 years

AIRS CO2- Night - 2002

Results

O E
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5-Year Seasonal Mean

AIRS CO2 - Night - MAR/MAY - ALL YEARS

AIRS CO2 - Night - JUN/AUG - ALL YEARS

Results
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AIRS Growth Rate

Very rough estimate, just raw differences

Results

002 Growth Rate/Yr from 2003-2007 (ppm)

@ Mean is around 2.5ppm/year
@ Will fit each grid point to rate equation in future

@ Higher rates for high-latitude land? Southern Africa
anomaly is Kalahari Desert - will investigate.
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AIRS versus NOAA’s CarbonTracker

@ Carbontracker - NOAA’s asimilated CO2 transport model.
Uses GobalView data as ingest.

@ Data is in 4D form - We average in time and interpolate to
AIRS pressure levels before applying our measurement

Comparison weighting function.
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Error in Using Zonal Jacobian Climatology

Left: Zonal climatology, Right: Actual Jacobians

CarbonTracker CO2 - MAR/MAY All Years CarbonTracker - Night - April 2004 - Weighed CO, ppm

Comparison

Climatology for Jacobians introduces 1-2 ppm errors. Will fix.
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5-Year seasonal mean - Spring - Summer

CarbonTracker CO2 - MAR/MAY Al Years

AIRS CO2 - Night - MAR/MAY - ALL YEARS

Comparison
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5-Year seasonal mean - Fall - Winter

GarbonTracker CO2 - SEP/NOV All Years

AIRS COZ - Night - SEP/NOV - ALL YEARS

Comparison
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Seasonal Cycle of Year 2006 - Spring - Summer

CarbanTracker CO2 - MAR/NAY 2008

AIRS CO2 - Night - MAR/NAY 2008

Comparison

373 374 375 376 377 378 379 380 381 382 383 3\4 366 370 372 374 376 78 380 382 3\/4 3\6 386

CarbanTracker CO2 - JUN/AUG 2006
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Seasonal Cycle of Year 2006 - Fall - Winter

CarbonTracker CO2 - SEP/NOV 2006

AIRS CO2 - Night - SEP/NOV 2006

Comparison
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AIRS and Schiamachy

Scimachy - near IR - daytime only.

AIRS CO2 - Day - All Years SCIAMACHY CO2 - 3 years

Comparison

33 370 372 374 376 378 380 382 384 3 383 368 970 72 374 376 378 30 382 384 386 388
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5-Year seasonal mean - Spring/Summer

AIRS CO2 - Day - MARMAY - ALL YEARS SCIAMACHY CO2 - Spiing 3 years

Comparison

38 370 372 374 376 378 380 382 384 3% 383 368 370 72 374 376 378 380 382 384 386 368
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5-Year seasonal mean - Fall/Winter

AIRS CO2 - Day - SEP/NOV - ALL YEARS

SCIAMACHY CO2 - Fall 3 years

Comparison

38 370 372 374 376 378 380 382 384 3% 383 368 370 72 374 376 378 380 382 384 386 368
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Conclusion

@ Very encouraging results
@ Not discussed: AIRS SW versus LW differences suggest that
ECMWEF errors are equivalent to ~1 ppm.

@ AIRS and the assimilated model CarbonTracker agree to
some degree. AIRS indicates CarbonTracker transport is
too “strong”.

@ Of concern, our low SH ocean CO;. That is also where our
day/night differences are largest.

@ Some agreement with preliminary SCIAMACHY data.
SCIAMACHY unreasonably low at times??? (Will discuss
with Bremen.)

@ Need to generate, and save, gridded Jacobians for proper
comparison to CarbonTracker (or other models).

@ Like to improve clear yield in NH winter, or move to
cloud-cleared radiances??
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250 mbar (Chahine) vs 450 mbar (UMBC) CO,

250 mbar 450 mbar

AIRS CO2 - Night - JUN/AUG - 2004

Conclusion
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